19 research outputs found

    Demonstration of tunability of HOFI waveguides via start-to-end simulations

    Get PDF
    In recent years, hydrodynamic optical-field-ionized (HOFI) channels have emerged as a promising technique to create laser waveguides suitable for guiding tightly focused laser pulses in a plasma, as needed for laser-plasma accelerators. While experimental advances in HOFI channels continue to be made, the underlying mechanisms and the roles of the main parameters remain largely unexplored. In this paper, we propose a start-to-end simulation pipeline of the HOFI channel formation and the resulting laser guiding and use it to explore the underlying physics and the tunability of HOFI channels. This approach is benchmarked against experimental measurements. HOFI channels are shown to feature excellent guiding properties over a wide range of parameters, making them a promising and tunable waveguide option for laser-plasma accelerators

    Measurement of the decay of laser-driven linear plasma wakefields.

    Get PDF
    We present measurements of the temporal decay rate of one-dimensional (1D), linear Langmuir waves excited by an ultrashort laser pulse. Langmuir waves with relative amplitudes of approximately 6% were driven by 1.7J, 50fs laser pulses in hydrogen and deuterium plasmas of density n_{e0}=8.4×10^{17}cm^{-3}. The wakefield lifetimes were measured to be τ_{wf}^{H_{2}}=(9±2) ps and τ_{wf}^{D_{2}}=(16±8) ps, respectively, for hydrogen and deuterium. The experimental results were found to be in good agreement with 2D particle-in-cell simulations. In addition to being of fundamental interest, these results are particularly relevant to the development of laser wakefield accelerators and wakefield acceleration schemes using multiple pulses, such as multipulse laser wakefield accelerators

    Low-density hydrodynamic optical-field-ionized plasma channels generated with an axicon lens

    Get PDF
    We demonstrate optical guiding of high-intensity laser pulses in long, low density hydrodynamic optical-field-ionized (HOFI) plasma channels. An axicon lens is used to generate HOFI plasma channels with on-axis electron densities as low as ne(0)=1.5×1017 cm−3n_e(0) = 1.5\times 10^{17}\, \mathrm{cm}^{-3} and matched spot sizes in the range 20μm≲WM≲40μm 20 \mu \mathrm{m} \lesssim W_M \lesssim 40 \mu \mathrm{m}. Control of these channel parameters via adjustment of the initial cell pressure and the delay after the arrival of the channel-forming pulse is demonstrated. For laser pulses with a peak axial intensity of 4×1017 W cm−24 \times 10^{17}\, \mathrm{W\,cm}^{-2}, highly reproducible, high-quality guiding over more than 14 Rayleigh ranges is achieved at a pulse repetition rate of 5 Hz, limited by the available channel-forming laser and vacuum pumping system. Plasma channels of this type would seem to be well suited to multi-GeV laser wakefield accelerators operating in the quasi-linear regime

    Meter-Scale, Conditioned Hydrodynamic Optical-Field-Ionized Plasma Channels

    Get PDF
    We demonstrate through experiments and numerical simulations that low-density, low-loss, meter-scale plasma channels can be generated by employing a conditioning laser pulse to ionize the neutral gas collar surrounding a hydrodynamic optical-field-ionized (HOFI) plasma channel. We use particle-in-cell simulations to show that the leading edge of the conditioning pulse ionizes the neutral gas collar to generate a deep, low-loss plasma channel which guides the bulk of the conditioning pulse itself as well as any subsequently injected pulses. In proof-of-principle experiments we generate conditioned HOFI (CHOFI) waveguides with axial electron densities of ne0≈1×1017  cm−3n_\mathrm{e0} \approx 1 \times 10^{17} \; \mathrm{cm^{-3}}, and a matched spot size of 26  μm26 \; \mathrm{\mu m}. The power attenuation length of these CHOFI channels is Latt=(21±3)  mL_\mathrm{att} = (21 \pm 3) \; \mathrm{m}, more than two orders of magnitude longer than achieved by HOFI channels. Hydrodynamic and particle-in-cell simulations demonstrate that meter-scale CHOFI waveguides with attenuation lengths exceeding 1 m could be generated with a total laser pulse energy of only 1.21.2 J per meter of channel. The properties of CHOFI channels are ideally suited to many applications in high-intensity light-matter interactions, including multi-GeV plasma accelerator stages operating at high pulse repetition rates

    2022 Review of Data-Driven Plasma Science

    Get PDF
    Data-driven science and technology offer transformative tools and methods to science. This review article highlights the latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS), i.e., plasma science whose progress is driven strongly by data and data analyses. Plasma is considered to be the most ubiquitous form of observable matter in the universe. Data associated with plasmas can, therefore, cover extremely large spatial and temporal scales, and often provide essential information for other scientific disciplines. Thanks to the latest technological developments, plasma experiments, observations, and computation now produce a large amount of data that can no longer be analyzed or interpreted manually. This trend now necessitates a highly sophisticated use of high-performance computers for data analyses, making artificial intelligence and machine learning vital components of DDPS. This article contains seven primary sections, in addition to the introduction and summary. Following an overview of fundamental data-driven science, five other sections cover widely studied topics of plasma science and technologies, i.e., basic plasma physics and laboratory experiments, magnetic confinement fusion, inertial confinement fusion and high-energy-density physics, space and astronomical plasmas, and plasma technologies for industrial and other applications. The final section before the summary discusses plasma-related databases that could significantly contribute to DDPS. Each primary section starts with a brief introduction to the topic, discusses the state-of-the-art developments in the use of data and/or data-scientific approaches, and presents the summary and outlook. Despite the recent impressive signs of progress, the DDPS is still in its infancy. This article attempts to offer a broad perspective on the development of this field and identify where further innovations are required

    Secondary wavelength stabilization of unbalanced Michelson interferometers for the generation of low-jitter pulse trains

    Get PDF
    We present a double unbalanced Michelson interferometer producing up to 4 output pulses from a single input pulse. The interferometer is stabilized with the Hänsch-Couillard method using an auxiliary low power continuous wave laser injected into the interferometer, allowing the stabilization of the temporal jitter of the output pulses to 0.02fs. Such stabilized pulse trains would be suitable for driving multi-pulse laser wakefield accelerators and the technique could be extended to include amplification in the arms of the interferometer

    Excitation and control of plasma wakefields by multiple laser pulses

    No full text
    We demonstrate experimentally the resonant excitation of plasma waves by trains of laser pulses. We also take an important first step to achieving an energy recovery plasma accelerator by showing that unused wakefield energy can be removed by an out-of-resonance trailing laser pulse. The measured laser wakefields are found to be in excellent agreement with analytical and numerical models of wakefield excitation in the linear regime. Our results indicate a promising direction for achieving highly controlled, GeV-scale laser-plasma accelerators operating at multi-kilohertz repetition rates

    Excitation and control of plasma wakefields by multiple laser pulses

    Get PDF
    We demonstrate experimentally the resonant excitation of plasma waves by trains of laser pulses. We also take an important first step to achieving an energy recovery plasma accelerator by showing that a plasma wave can be damped by an out-of-resonance trailing laser pulse. The measured laser wakefields are found to be in excellent agreement with analytical and numerical models of wakefield excitation in the linear regime. Our results indicate a promising direction for achieving highly controlled, GeV-scale laser-plasma accelerators operating at multikilohertz repetition rates
    corecore